If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-1k^2-8k=0
a = -1; b = -8; c = 0;
Δ = b2-4ac
Δ = -82-4·(-1)·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8}{2*-1}=\frac{0}{-2} =0 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8}{2*-1}=\frac{16}{-2} =-8 $
| 27+3x=36+2x | | s-52/5=11/2 | | y=24/ | | 4x-x^2=10 | | 79+16x=81+14x | | (y+23)=(3y-5) | | -5(10-7x)=335 | | 3(4x+2)=-78 | | 2(q-3)-(q-2)=5 | | 19=c+248/29 | | 4(-4x+10)=232 | | 4(-4x+10)=233 | | 5-6n=4n-75 | | 2u–31=4u–89 | | 3(-5+x)=-12 | | 14+2x-9=6x+4-4x | | 62-w=280 | | (5x+19)=96 | | t=28=51 | | 3-|8x-6|=3x | | 6(1x+6)=-129 | | 8x–5=5x+10 | | v+55/17=6 | | 7(7-3x)=-203 | | -8(n-1)=4(n+2) | | n+1.96=13.6 | | -8x-55=29-12x | | 4(x+12)=6 | | 6(2+7x)=138 | | (10x+4)=84 | | 5y+58=12y+19 | | -160+8x=80-2x |